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Abstract: We perform a numerical test of a relativistic heavy quark(RHQ) action, re-
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of the improvement parameters previously determined at one-loop level for the RHQ ac-

tion, we investigate a restoration of rotational symmetry for heavy-heavy and heavy-light

meson systems around the charm quark mass. We focused on two quantities, the meson

dispersion relation and the pseudo-scalar meson decay constants. It is shown that the RHQ

action significantly reduces the discretization errors due to the charm quark mass. We also

calculate the S-state hyperfine splittings for the charmonium and charmed-strange mesons

and the Ds meson decay constant. The remaining discretization errors in the physical

quantities are discussed.
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1. Introduction

For a search of new physics beyond the standard model through flavor physics, a precise

determination of physical quantities such as quark masses and hadronic matrix elements

associated with heavy mesons is required within a few % accuracy. Although, in principle,

lattice QCD calculation is an ideal tool for this purpose, it suffers from large discretization

effects due to the charm and bottom quark masses: amc∼>0.3, amb∼>1 in quenched ap-

proximation and amc∼>0.5, amb∼>1.5 in unquenched simulation with current computational

resources. If we adopt the O(a) improved Wilson quark action for the heavy quarks, the

leading cutoff errors are expected to be O((amQ)n). In order to achieve a few % accuracy,

it is necessary to reduce the discretization errors for the heavy quarks to the same level for

the light quarks, which is O((aΛQCD)2).

– 1 –



J
H
E
P
0
2
(
2
0
0
7
)
0
1
9

For this end an on-shell O(aΛQCD) improved RHQ action has been proposed in ref. [1],

which extends the well known on-shell improvement program [2 – 6] to massive quarks with

amQ ∼ O(1). The action works better as the lattice spacing becomes smaller. This is

a fascinating feature from a view point of controlling the systematic errors coming from

the cutoff effects. Another important point is that the action allows to treat the charm

and bottom quarks simultaneously. In case of NRQCD, widely used for calculation of

the bottom quark physics, on the other hand, it is theoretically impossible to take the

continuum limit and difficult to treat the charm quark.

The explicit form of the RHQ action is given by

SRHQ =
∑

x

[

m0q̄(x)q(x) + q̄(x)γ4D4q(x) + ν
∑

i

q̄(x)γiDiq(x)

−
rta

2
q̄(x)D2

4q(x) −
rsa

2

∑

i

q̄(x)D2
i q(x) (1.1)

−
iga

2
cE

∑

i

q̄(x)σ4iF4iq(x) −
iga

4
cB

∑

i,j

q̄(x)σijFijq(x)



 ,

where four improvement parameters ν, rs, cE and cB are relevant, while rt is redundant.

The leading cutoff effects of O((amQ)n) in this formulation can be removed by adjusting ν

and quark field renormalization factor as a function of amQ and gauge coupling constant

g. We can also remove the next-to-leading cutoff effects of O((amQ)naΛQCD) by adjusting

rs, cE and cB . Note that it is recently pointed out that one can remove O((amQ)naΛQCD)

errors in the spectral quantities such as masses by adjusting only two parameters, cB = cE

and ν [7]. However it is still true that 4 parameters, ν, rs, cE and cB , are necessary to

remove all O((amQ)naΛQCD) errors in on-shell matrix elements. Once these are achieved,

we are left with only the cutoff effects of O(f2(amQ)(aΛQCD)2) where f2(amQ) is an analytic

function of amQ around amQ = 0. We assume f2(amQ) ∼ O(1) for the massive quarks

with mQa ∼ O(1). In the massless limit ν and rs become unity and cE and cB agree with

cSW. Since, at present, it is difficult to determine rs, cE , cB nonperturbatively, we have

performed a perturbative determination of the four parameters at one-loop level in a mass

dependent way [8]. In this case the remaining leading cutoff effects are O(α2
sf

(2)
0 (amQ)) for

the RHQ action. Similarly, we have also determined the mass-dependent renormalization

constants and the improvement coefficients for the vector and axial-vector currents at one-

loop level [9].

In this work we study the discretization effects of the RHQ action with the perturba-

tively determined improvement parameters using two different gauge actions in quenched

approximation at a finite lattice spacing of a ' 0.1fm. We employ four heavy quark masses

around the charm quark mass. In order to investigate the discretization effects, we cal-

culate the dispersion relation both for the heavy-heavy and heavy-light mesons and the

space-time symmetry of the pseudo-scalar meson decay matrix elements. For comparison,

the same calculation is repeated with the heavy clover quark action. We observe sufficient

reduction of (amQ)n errors in the RHQ action. In addition we extract the charmed-strange

and charmonium hyperfine splittings and the Ds meson decay constant fDs at the physi-
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cal charm quark mass. We compare our results with previous ones and discuss the cutoff

effects on these quantities with the RHQ quark action.

This paper is organized as follows. In section 2 we explain the RHQ action and

fix the notations. Simulation details are summarized in section 3. In section 4 we give

a comparison between the RHQ action and the clover action by showing the dispersion

relation and the space-time symmetry. We also present the results of physical quantities

such as the hyperfine splittings and the decay constants, and discuss their cutoff errors in

detail. A comparison of our results with the previous ones for the hyperfine splittings and

the decay constants is also shown. In section 5 we give our conclusion. A brief review of

recent works related to this formulation can be found in ref. [10].

2. Formulation

2.1 Actions

For the gauge part we employ a renormalization-group (RG) improved gauge action pro-

posed by Iwasaki [11] as well as the ordinary plaquette gauge action. For the quark part

we use the clover quark action [4] for the light quarks and the RHQ action for the heavy

quarks. We rewrite the RHQ action of eq. (1.1) to the following form with the use of

hopping parameter κ, which is more suitable for numerical simulations:

SRHQ =
∑

x,y

q(x)Dx,yq(y), (2.1)

Dx,y = δxy − κ
∑

k=1,3

{

(rs − νγk)Ux,kδx+k̂,y + (rs + νγk)U
†
x,kδx,y+k̂

}

−κ
{

(rt − γ4)Ux,4δx+4̂,y + (rt + γ4)U
†
x,4δx,y+4̂

}

− δxycBκ
∑

i<j

σijFij(x) − δxycEκ
∑

i

σ4iF4i(x), (2.2)

where the field strength Fµν in the clover terms is expressed as

Fµν(x) =
1

8

4
∑

i=1

(

Ui(x) − U †
i (x)

)

, (2.3)

U1(x) = Ux,µUx+µ̂,νU
†
x+ν̂,µU †

x,ν , (2.4)

U2(x) = Ux,νU
†
x−µ̂+ν̂,µU †

x−µ̂,νUx−µ̂,µ, (2.5)

U3(x) = U †
x−µ̂,µU †

x−µ̂−ν̂,νUx−µ̂−ν̂,µUx−ν̂,ν , (2.6)

U4(x) = U †
x−ν̂,νUx−ν̂,µUx+µ̂−ν̂,νU

†
x,µ. (2.7)

As mentioned in the introduction, the parameters ν, rs, cB and cE are already determined

as a function of the heavy quark mass up to one-loop level. In this work we choose rt = 1.

– 3 –
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2.2 Improvement of axial vector current

The form of renormalized axial vector current with the O(aΛQCD) improvement is given in

ref. [9]:

AR
µ (x) =

√

2κq

√

2κQZAµ

[

q̄(x)γµγ5Q(x) − c+
Aµ

{q̄(x)∆+
µ γ5Q(x)} − c−Aµ

{q̄(x)∆−
µ γ5Q(x)}

+cL
Aµ

{~∆iq̄(x)}γiγµγ5Q(x) − cR
Aµ

q̄(x)γµγ5γi{~∆iQ(x)}
]

, (2.8)

where q and Q denote the light and heavy quark fields, respectively. ZAµ is the finite renor-

malization factor connecting the lattice to the continuum MS scheme (ZA = Z latt
Aµ

/Zcont
Aµ

)

as defined in ref. [9]. Improvement coefficients for the temporal direction are in general

different from those for the spatial direction: c±,R,L
A4

6= c±,R,L
Ak

. An additional overall factor
√

2κq

√

2κQ is associated with the field redefinition in the RHQ action of eq. (2.2). ZAµ

and c
{±,R,L}
Aµ

are calculated as a function of the quark masses amQ and amq up to one-loop

level [9]. With the aid of the equation of motion we can always choose cR
A4

= cL
A4

= 0. Co-

variant lattice derivatives ∆+
µ and ∆−

µ are defined as ∆+
µ = ∆

→
µ +∆

←
µ and ∆−

µ = ∆
→

µ−∆
←

µ,

where ∆
→

µ and ∆
←

µ are lattice derivative acting on the right or left field as

q̄(x) γ5 ∆
→

µ Q(x) = q̄(x) γ5
1

2
[ Uµ(x)Q(x + µ̂) − U †

µ(x − µ̂)Q(x − µ̂) ], (2.9)

q̄(x) ∆
←

µ γ5 Q(x) =
1

2
[ q̄(x + µ̂)U †

µ(x) − q̄(x − µ̂)Uµ(x − µ̂) ] γ5 Q(x). (2.10)

Note that the definition of the improved current of eq. (2.8) is slightly modified from that

in ref. [9]. The difference will be explained in appendix A. Hereafter we use a short-handed

notation for the improvement terms such as

O+
µ ≡ −c+

Aµ
{q̄(x)∆+

µ γ5Q(x)}, (2.11)

O−
µ ≡ −c−Aµ

{q̄(x)∆−
µ γ5Q(x)}, (2.12)

OL
k ≡ +cL

Ak
{∆
→

iq̄(x)}γiγkγ5Q(x), (2.13)

OR
k ≡ −cR

Ak
q̄(x)γkγ5γi{∆

→
iQ(x)}. (2.14)

The pseudo-scalar meson decay constant is defined as

〈

0|AR
µ (0)|PS(p)

〉

= ipµfPS(Aµ), (2.15)

where |PS(p)〉 is the pseudo-scalar meson state with momentum p. The decay constant

denoted as fPS(Aµ) identifies which component of the axial vector current is used. In the

continuum limit fPS(Aµ) for different µ should agree with each other.

3. Simulation details

3.1 Simulation parameters

We employ a single value of the gauge coupling constant, β = 2.6 for the Iwasaki action

and β = 6.0 for the plaquette action, on a L3 ×T = 243 × 48 lattice. Gauge configurations

– 4 –
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Iwasaki

flavor κ MPS/MV ν rs cB ω = cE/cB

κ1 0.13295 0.5567(36) 1.0 1.0 1.50 1.0

light κ2 0.13222 0.6898(23) 1.0 1.0 1.50 1.0

κ3 0.13138 0.7734(16) 1.0 1.0 1.50 1.0

κ4 0.11513 0.9372(7) 1.03160 1.12787 1.66304 0.92064

heavy κ5 0.10524 0.9680(4) 1.05935 1.20160 1.75930 0.88889

κ6 0.09455 0.9813(2) 1.10040 1.29777 1.88490 0.85628

κ7 0.07841 0.9901(1) 1.19159 1.48857 2.13426 0.81003

Plaquette

flavor κ MPS/MV ν rs cB ω = cE/cB

κ1 0.13449 0.5492(173) 1.0 1.0 1.769 1.0

light κ2 0.13373 0.7088(27) 1.0 1.0 1.769 1.0

κ3 0.13298 0.7837(16) 1.0 1.0 1.769 1.0

κ4 0.11456 0.9345(5) 1.04161 1.16034 2.02423 0.91709

heavy κ5 0.10190 0.9728(2) 1.08301 1.26201 2.17790 0.88345

κ6 0.09495 0.9808(2) 1.11284 1.32840 2.27776 0.86586

κ7 0.07490 0.9911(1) 1.23871 1.58259 2.66050 0.81742

Table 1: Simulation parameters for the RHQ action with the Iwasaki gauge action(upper) and the

plaquette gauge action(lower).

are generated by a 5-hit pseudo heat bath update supplemented by four over-relaxation

steps. These configurations are then fixed to the Coulomb gauge at every 100 sweeps for the

Iwasaki gauge action and 200 sweeps for the plaquette gauge action. We have accumulated

300 gauge configurations for each gauge action with the RHQ action and 250 with the

heavy clover quark action. With the use of the Sommer scale r0 = 0.5fm the lattice cutoffs

are determined as a−1(r0) = 2.0129(46)[GeV] [12] and a−1(r0) = 2.1184(94)[GeV] [13],

respectively. The spatial lattice size in physical unit is approximately 2.4fm, which is large

enough for the charmed mesons.

Simulation parameters for the quark part are summarized in table 1 for the Iwasaki

and the plaquette gauge actions, where MPS/MV represents the pseudo-scalar to vector

meson mass ratio of the light-light and heavy-heavy mesons. For each gauge action we

adopt three values of the light quark masses corresponding to MPS/MV ' 0.55 − 0.78 to

cover the strange quark mass and four values of the heavy quark masses to sandwich the

charm quark mass.

For the light quarks we use the clover quark action with the nonperturbative value

of the clover coefficient: cNP
SW = 1.50(5) [14] for the Iwasaki action and 1.769 [15] for the

plaquette action. Here it is noted that cNP
SW = 1.50(5) for the Iwasaki action is taken from

the preliminary result obtained in the infinite volume limit, which is 6 % larger than the

final value cNP
SW = 1.41 of ref. [14] defined on a fixed physical volume. For the heavy quarks

we adopt the RHQ action with the improvement parameters ν, rs, cE and cB determined

up to one-loop level with the mean-field(MF) improvement, details of which are explained

– 5 –
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Iwasaki

flavor κ MPS/MV ν rs cB ω = cE/cB

light κ3 0.13138 0.7734(16) 1.0 1.0 1.50 1.0

κ̃4 0.1256 0.9353(5) 1.0 1.0 1.50 1.0

heavy κ̃5 0.1186 0.9717(3) 1.0 1.0 1.50 1.0

κ̃6 0.1119 0.9836(2) 1.0 1.0 1.50 1.0

Plaquette

flavor κ MPS/MV ν rs cB ω = cE/cB

light κ3 0.13298 0.7837(16) 1.0 1.0 1.769 1.0

κ̃4 0.12780 0.9359(8) 1.0 1.0 1.769 1.0

heavy κ̃5 0.11900 0.9770(3) 1.0 1.0 1.769 1.0

κ̃6 0.11480 0.9834(2) 1.0 1.0 1.769 1.0

Table 2: Simulation parameters for the heavy clover quark action with the Iwasaki gauge ac-

tion(upper) and the plaquette gauge action(lower).

in appendix A. In order to remove O(aΛQCD) errors at the massless point, we replace a

massless part of cE and cB by their nonperturbative value cNP
SW as

cE,B = cPT
E,B(ampole) − cPT

E,B(ampole = 0) + cNP
SW, (3.1)

where the superscript PT represents the perturbative value up to one-loop level.

For the light-light current we use nonperturbative values of the renormalization factor

and the improvement coefficients for the plaquette gauge action: ZNP
A = 0.807, bNP

A = 1.28

and cNP
A = 0.037 [16]. For the Iwasaki gauge action we employ the mean-field improved

values: ZA = 0.86057, bA = 1.19998 and cA = 0.00864 [17]. At present nonperturbative

values are not available for this action. For the heavy-light and heavy-heavy currents, on

the other hand, we use the mean-field improved values for c
{±,L,R}
Aµ

and ZAµ at the one-loop

level (see appendix A) for both gauge actions. In case of the plaquette gauge action we

replace the massless part of c+
Aµ

and ZAµ by the nonperturbative ones, cNP
A and ZNP

A :

c+
Aµ

= g2c+,PT
Aµ

(ampole) − g2c+,PT
Aµ

(ampole = 0) + c+,NP
A , (3.2)

ZAµ = ZPT
Aµ

(ampole) − ZPT
Aµ

(ampole = 0) + ZNP
Aµ

. (3.3)

In order to investigate a degree of improvement for the RHQ action we have made an

additional simulation using the clover quark action both for the heavy and light quarks.

Simulation parameters are given in table 2, where we employ one value of the light quark

mass and three values of the heavy quark masses roughly equal to lighter three for the

RHQ action.

On each configuration fixed with the Coulomb gauge, we invert the quark matrix

employing the BiCGstab algorithm with the stopping condition that the residual must be

smaller than 1.0 × 10−14. For the heavy quarks we perform a fixed number of iterations.

We choose 2T = 96 such that the stopping condition is always satisfied and it is assured

that the heavy quarks can propagate from the origin to any point on the lattice. For

– 6 –
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action Iwasaki+RHQ Iwasaki+CL Plaquette+RHQ Plaquette+CL

flavor A B flavor A B flavor A B flavor A B

κ1 1.28 0.28 κ1 1.28 0.35

light κ2 1.25 0.3 κ2 1.28 0.35

κ3 1.25 0.32 κ3 1.25 0.32 κ3 1.28 0.35 κ3 1.28 0.35

κ4 1.25 0.50 κ̃4 1.25 0.50 κ4 1.25 0.50 κ̃4 1.25 0.50

heavy κ5 1.25 0.58 κ̃5 1.25 0.65 κ5 1.25 0.58 κ̃5 1.25 0.65

κ6 1.25 0.65 κ̃6 1.25 0.82 κ6 1.25 0.60 κ̃6 1.25 0.65

κ7 1.25 1.00 κ7 1.25 0.8

Table 3: Smearing parameters.

both the light and heavy quark propagators we employ not only a local source but also an

exponentially smeared source with a form of A exp(−Br), where smearing parameters A

and B are tuned to enhance an overlap with the ground state. Numerical values of A and

B are listed in table 3 for each combination of the gauge and quark actions.

3.2 Measurement of two-point functions

We measure the S-state (i.e. pseudo-scalar and vector) meson spectra for the light-light(L-

L), heavy-light(H-L) and heavy-heavy(H-H) systems using the correlation functions pro-

jected onto zero spatial momentum state:

∑

~x

〈OL(~x, t)O†
S,L(0)〉, (3.4)

where O = P or V is understood. The subscripts S and L represent the smeared and

local operators, respectively. We always adopt a local sink while taking both the local and

smeared sources. Note that both the quark and anti-quark fields in OS are smeared.

To extract the pseudo-scalar meson decay constant for the L-L, H-L, H-H systems, we

calculate the correlation function

∑

~x

〈Aimpr
4 (~x, t)P †

S(0)〉, (3.5)

where the superscript impr represents the O(a) improved current given in eq. (2.8).

We also measure the meson correlation functions with finite spatial momenta given by

a~p =
2π

L
× {(1, 0, 0), (1, 1, 0)}. (3.6)

These correlation functions are used to calculate the dispersion relation of the S-state

mesons and also to extract the decay constant using the temporal and spatial components

of the axial vector current.

– 7 –
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Iwasaki plaquette

correlator system source tmin/tmax tmin/tmax

〈V V †〉 H-L S 10/22 7/17

〈PP †〉 H-L S 10/22 9/22

〈PP †〉 H-L P 13/22 14/22

〈PP †〉 with |~p| 6= 0 H-L S 8/20 9/22

〈V V †〉 H-H S 12/22 11/21

〈PP †〉 H-H S 12/22 11/21

〈PP †〉 H-H P 16/22 18/23

〈PP †〉 with |~p| 6= 0 H-H S 12/20 10/22

Table 4: Fitting range from tmin to tmax for the two-point functions.

3.3 Fitting procedure

The correlation functions in eq. (3.4) are expected to take the following form for a large

euclidean time separation:

Σ~x〈OL(~x, t)O†
S,L(0)〉 =

ZOL
Z†
OS,L

2aM
e−aMT/2 cosh(aM(T/2 − t)), (3.7)

Σ~x〈A
impr
µ (~x, t)P †

S(0)〉 =
Z

Aimpr
µ

Z†
PS

2aM
e−aMT/2 sinh(aM(T/2 − t)), (3.8)

where M is a mass of the ground state allowed to couple to the operator. Matrix elements

in the above expressions are given by

ZPS,L
= 〈0|PS,L(0)|PS(~p = ~0)〉, (3.9)

ZVS,L
= 〈0|VS,L(0)|V (~p = ~0)〉, (3.10)

Z
Aimpr

µ
= 〈0|Aimpr

µ (0)|PS(~p = ~0)〉, (3.11)

where |PS(~p = ~0)〉 and |V (~p = ~0)〉 represent the pseudo-scalar and vector meson states

at rest. We first extract aM by fitting the correlators of eq. (3.7), and then perform a

fit of eq. (3.8) with aM fixed. We employ the same fitting procedure for the correlation

functions with finite spatial momenta. Since our statistics are not sufficient to incorporate

correlations between different time slices, we always use the uncorrelated fit for our analysis.

We estimate statistical errors by the jackknife method with a bin size of 10 configurations

to eliminate autocorrelations. In case that the correlated fit is possible, we use it to check

the results obtained by the uncorrelated fit. We find that the results are consistent within

statistical errors.

The fitting ranges summarized in table 4 are chosen by investigating effective mass

plots of the meson correlators presented in figure 1, where we take κ3 for the light quark

and κ6 for the heavy quark as a representative case. Note that κ6 roughly corresponds

to the charm quark mass. We take similar fitting ranges for the correlators with finite

spatial momenta, which are given in table 4. Figure 2 shows effective mass plots for the

pseudo-scalar meson correlators with finite spatial momenta.

– 8 –
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Figure 1: Effective mass plots for the H-L(left) and H-H(right) mesons with zero spatial momentum

in case of κheavy = κ6 and κlight = κ3 with the Iwasaki gauge action. Circles represent the local

source correlators and squares for the smeared source correlators.
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Figure 2: Effective mass plots for the H-L(left) and H-H(right) pseudoscalar mesons with |a~p|2 =

(2π/L)2 (top) and |a~p|2 = 2(2π/L)2 (bottom) in case of κheavy = κ6 and κlight = κ3 with the

Iwasaki gauge action. Circles represent the local source correlators and squares for the smeared

source correlators.

4. Results

4.1 Dispersion relation and space-time interchange symmetry

In case that the improvement parameters are perturbatively determined up to one-

loop level, the leading cutoff errors in the RHQ action is theoretically expected to be

O(α2
sf

(2)
0 (amQ)), where f

(2)
0 (amQ) ∼ O(1) is assumed for amQ ∼ O(1). We numerically

check this theoretical expectation by investigating the dispersion relation of the S-state

mesons and the space-time interchange symmetry for the pseudo-scalar meson decay con-

stant. These quantities are sensitive to the cutoff effects for the heavy quarks, and hence

suitable to estimate a size of f
(2)
0 (amQ).

We calculate an effective speed of light ceff both for the pseudo-scalar and vector
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Figure 3: Momentum dependence of the pseudoscalar meson energies for the light-light sys-

tem(top), the heavy-light system(middle) and the heavy-heavy(bottom) systems in case of κheavy =

κ6 and κlight = κ3 with the Iwasaki gauge action. The dashed line represents the continuum disper-

sion relation with ceff = 1, while the solid one represents the fitting results with a linear function.

mesons by fitting the meson energy aE(~p) as a function of the spatial momentum a~p with

the following form:

(aE(~p))2 = c2
eff |a~p|2 + (aE(~0))2. (4.1)

In the continuum limit ceff should become unity. At finite lattice spacing, however, ceff

deviates from unity due to the lattice cutoff errors. In figure 3 (aE)2 is plotted as a

function of (a~p)2, where the fitting result with eq. (4.1) is given by the solid line together

with the continuum dispersion relation with ceff = 1 represented by the dashed line. We

observe that the linearity of E2 in |~p|2 is well satisfied and ceff is close to unity. Fitted

values of ceff for the L-L, H-L and H-H cases are plotted in figure 4 for the pseudo-scalar

mesons and in figure 5 for the vector mesons.

Here it should be noted that in addition to finite quark mass errors ceff suffers from

finite momentum corrections of O(|a~p|2) so that ceff could deviate from unity even for

the massless quarks. Indeed figure 4 shows that as the meson mass Ma decreases, ceff

becomes closer to unity within this uncertainty. In the heavy quark mass region around

Ma ∼ 1 − 2, ceff for the heavy clover quark action deviates from unity by about 7 − 10%.

On the other hand, the RHQ action satisfies ceff = 1 within 2 − 3% errors, which are

comparable to the deviation for the L-L case. Since fitted values of ceff for the vector

mesons in figure 5 are consistent with those for the pseudo-scalar mesons within statistical

errors, we use the values of ceff determined from the pseudo-scalar meson dispersion relation
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Figure 4: Effective speed of light for the heavy-heavy and heavy-light pseudoscalar mesons using

the RHQ action and the heavy clover quark action with the Iwasaki(left) and the plaquette(right)

gauge actions.

0 0.5 1 1.5 2 2.5 3
aM

V

RHQ, H-H
RHQ, H-L
CL, H-H
CL, H-L
CL, L-L

0 0.5 1 1.5 2 2.5
aM

V

0.9

0.95

1
Iwasaki plaquette

Figure 5: Same as figure 4 for the vector mesons.

in the following discussion. We observe no obvious difference in the results between the

Iwasaki and plaquette gauge actions.

We also study the space-time symmetry of the pseudo-scalar meson decay matrix

element defined by

R ≡ i
〈0|AR

k |PS(~p)〉

〈0|AR
4 |PS(~p)〉

EPS

|pk|
, (4.2)

where AR
k and AR

4 represent the spatial and temporal components of the renormalized

axial vector current given in eq. (2.8). The pseudo-scalar meson state has finite spatial

momentum of |a~p| = 2π/24. The ratio R is plotted in figure 6 as a function of the meson

energy EPS with the lowest finite spatial momentum for the L-L, H-L and H-H systems,

where cPT+NP
A represents the partial replacement of the perturbative value for c+

Aµ
by
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action A κcrit χ2/dof

Iwasaki+RHQ 0.7583(15) 0.133802(4) 6.3

plaquette+RHQ 0.7886(38) 0.135247(9) 0.7

Table 5: Fitting results for chiral extrapolation of M2
PS for the light-light pseudoscalar meson.

action κud κs(K) κc(J/ψ, Mpole) κc(J/ψ, Mkin) κc(Ds, Mpole) κc(Ds, Mkin)

Iwasaki+RHQ 0.133749(4) 0.132422(4) 0.099414(22) 0.102362(377) 0.099640(49) 0.101528(862)

plaquette+RHQ 0.135200(9) 0.134026(5) 0.100593(21) 0.102610(343) 0.100669(35) 0.102402(810)

Table 6: Hopping parameters at the physical points.

the nonperturbative one defined in eq. (3.2), while cPT
A means the perturbative value for

c+
Aµ

without this replacement. For the plaquette gauge action we employ ZAµ defined in

eq. (3.3), though ZPT
Aµ

= 0.814 and ZNP
Aµ

= 0.807 agree with each other within 1%. Although

because of the finite momentum corrections the ratio R could deviate from unity even for

the massless quarks, it becomes consistent with unity within the statistical errors as the

meson energy aE vanishes. For the massive mesons with aE ∼ 1 − 2, on the other hand,

the heavy clover quark action violates the space-time symmetry by about 7 − 13%, while

the RHQ action retains R = 1 within 6% errors. An intriguing observation is that the ratio

R of the H-L system shows different aEPS dependences between the Iwasaki and plaquette

gauge actions: the ratio R decreases for the Iwasaki action as EPS increases, while it

increases for the plaquette action. This different behaviors could come from a fact that

the contributions of the O(a) improvement operators are sizable for the plaquette action,

whereas they are small for the Iwasaki action. This is observed in figures 7 and 8 which

show the relative contribution from each O(a) improvement operator of eqs. (2.11)–(2.14)

to the axial-vector currents defined by

∑

~x 〈O
{±,L,R}
µ (~x, t)P (0)〉

∑

~x 〈Aµ(~x, t)P (0)〉
. (4.3)

Dominant contributions always come from O+
µ operators for the plaquette action, while

their contributions are not so large for the Iwasaki action. In particular, this feature is

more prominent for the H-L system.

From the above analyses on ceff and R it can be concluded that the RHQ action

succeeds in significantly reducing the (mQa)n errors in the heavy clover quark action.

4.2 Physical quantities of S-state charmed mesons

4.2.1 Physical points

In order to obtain the meson spectra and the decay constants at the physical quark masses,

we have to interpolate the heavy quark mass to the charm quark mass mc, while extrapo-

lating the light quark mass to the u, d quark mass mud or interpolating it to the strange

quark mass ms. Since we employ only 3 values of the light quark masses in our simulation,

we consider only a linear extrapolation to the u, d quark mass. In the following the lattice

spacing is always determined by the Sommer scale with r0 = 0.5fm.
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Figure 6: R function defined by eq. (4.2) for the heavy-heavy and heavy-light pseudoscalar mesons

using the RHQ action and the heavy clover quark action with the Iwasaki(left) and the plaque-

tte(right) gauge actions.
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Figure 7: Contribution of each improvement term normalized by the diagonal one for the heavy-

heavy axial vector current.

The light-light pseudo-scalar meson masses are linearly fitted in 1/κ as

a2M2
PS = A

(

1

κlight
−

1

κcrit

)

, (4.4)

where κcrit is determined from the vanishing point of (aMPS)2. κud and κs are determined

so as to satisfy MPS = Mπ = 135.0MeV and MPS = MK = 497.7MeV, respectively. The

fitting results of A and κcrit are tabulated in table 5 and κud and κs are given in table 6.

We determine κc in two different ways: matching Mpole
PS to MDs = 1.9683GeV for

the charmed-strange meson or Mpole
V to MJ/ψ = 3.0969GeV for the charmonium, where

the superscript pole represents a pole mass determined from an exponential fall-off of the
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Figure 8: Same as figure 7 for the heavy-light axial vector current.

Mpole Mkin

action A B C χ2/dof A B C χ2/dof

Iwasaki+RHQ 0.0452(14) 0.0156(43) 0.0009(26) 0.0018 0.0676(23) −0.0120(78) 0.0122(50) 0.001

plaquette+RHQ 0.0524(14) −0.0028(33) 0.0081(19) 0.03 0.0745(20) −0.0403(59) 0.0288(34) 0.10

Table 7: Fitting results for the heavy-heavy hyperfine splitting as a function of the vector meson

mass.

meson correlator. Employing the following fitting functions

aMpole
PS = A + Bκheavy + Cκ2

heavy + Damlight
q (4.5)

for the heavy-light meson masses with amlight
q = (1/κlight − 1/κcrit)/2 and

aMpole
V = A + Bκheavy + Cκ2

heavy (4.6)

for the heavy-heavy meson masses, we have determined two values of κc, which are given

in table 6.

In order to estimate a magnitude of the cutoff errors, we also calculate the charmed

meson spectra employing the kinetic mass defined by

aMkin = aMpole/c2
eff . (4.7)

With the same fitting functions as eqs. (4.5) and (4.6) we have also determined κc(Ds,M
kin)

and κc(J/ψ,Mkin) listed in table 6. From these results we observe that a difference of κc

between two physical inputs MJ/ψ and MDs is less than 0.2%, while a difference of κc

between Mpole or Mkin is about 2%. In the following analysis, we always calculate all the

physical quantities using both Mpole and Mkin, in order to estimate the systematic errors

due to an ambiguity in the choice of Mpole or Mkin.

4.2.2 Hyperfine splitting for charmonium and charmed-strange meson

Figure 9 shows aMX
V dependence of the S-state charmonium hyperfine splitting a∆MX =

aMX
V − aMX

PS, where X = pole or kin. In order to interpolate the results at the physical
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Mpole Mkin Mpole Mkin expt.

∆M(J/ψ − ηc) 0.0728(8) 0.0847(20) 0.0788(6) 0.0877(18) 0.1173(12)

∆M(D∗
s − Ds) 0.1243(28) 0.1348(65) 0.1261(16) 0.1358(57) 0.1438(4)

Table 8: Charmonium and charmed-strange meson hyper-fine splittings in unit of GeV with Mpole

and Mkin. The lattice spacing is determined by the Sommer scale r0 = 0.5fm.

Mpole Mkin

action A B C χ2/dof A B C χ2/dof

Iwasaki+RHQ 0.0602(35) 0.0028(17) −0.0628(167) 0.13 0.0649(75) 0.0012(41) −0.0106(337) 0.03

plaquette+RHQ 0.0545(20) 0.0022(10) −0.0523(121) 0.22 0.0549(70) 0.0049(36) −0.0224(497) 0.61

Table 9: Fitting results for the heavy-light hyperfine splitting as a function of the pseudoscalar

meson mass.

Mpole

action A B C D χ2/dof

Iwasaki+RHQ 0.2204(93) −0.1337(113) 0.0312(39) 0.1780(199) 0.43

plaquette+RHQ 0.1285(20) −0.0217(26) −0.0065(10) 0.1967(140) 2.9

Mkin

action A B C D χ2/dof

Iwasaki+RHQ 0.2275(96) −0.1470(127) 0.0368(47) 0.1820(210) 0.33

plaquette+RHQ 0.1326(29) −0.0241(49) −0.0071(22) 0.1903(131) 1.7

Table 10: Fitting results for the heavy-light pseudoscalar meson decay constant determined from

A4 as a function of the pseudoscalar meson mass.

Mpole

action A B C D χ2/dof

Iwasaki+RHQ 0.1892(88) −0.0955(110) 0.0174(39) 0.1788(190) 0.44

plaquette+RHQ 0.1709(57) −0.0811(73) 0.0144(27) 0.1338(306) 0.55

Mkin

action A B C D χ2/dof

Iwasaki+RHQ 0.1975(96) −0.1104(129) 0.0235(50) 0.1836(198) 0.29

plaquette+RHQ 0.1746(54) −0.0868(70) 0.0163(28) 0.1370(311) 0.86

Table 11: Fitting results for the heavy-light pseudoscalar meson decay constant determined from

Ak as a function of the pseudoscalar meson mass.

charm quark mass, we adopt the ansatz that the splitting is a polynomial of the inverse

vector meson mass:

a∆MX = A/(aMX
V ) + B/(aMX

V )2 + C/(aMX
V )3, (4.8)

incorporating a property that the hyperfine splitting vanishes in the infinite quark mass

limit due to the heavy quark symmetry. The interpolation lines are also plotted in fig-

ure 9. Using the fitting results for the parameters A, B and C given in table 7, we obtain

∆M(J/ψ − ηc) in physical unit. ∆Mpole at κc(J/ψ,Mpole) and ∆Mkin at κc(J/ψ,Mkin)

are tabulated in table 8 for each gauge action together with the experimental value.

In figure 10 we plot the S-state charmed-strange meson hyperfine splitting a∆MX =
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Figure 9: Heavy-heavy meson S-state hyperfine splittings as a function of MV a.
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Figure 10: Heavy-light meson S-state hyperfine splittings as a function of aMPS with κlight = κ3.

aMX
V −aMX

PS as a function of aMX
PS together with the interpolation lines which are obtained

by employing the ansatz motivated by the heavy quark symmetry:

a∆MX = (A + Bamlight
q )/(aMX

PS) + C/(aMX
PS)2. (4.9)

Using the fitting results presented in table 9, we obtain ∆M(D∗
s − Ds) in physical unit.

∆Mpole at κc(Ds,M
pole) and κs, and ∆Mkin at κc(Ds,M

kin) and κs are listed in table 8

for each gauge action together with the experimental value.

4.2.3 Ds meson decay constants

The heavy-light pseudo-scalar meson decay constant afPS can be obtained from the tem-

poral and spatial components of eq. (2.15). In our calculation fPS(A4) is determined from

a3/2Φ4
P ≡

√

aMpole
PS afPS = Z

Aimpr
4

/

√

aMpole
PS (4.10)
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Mpole Mkin Mpole Mkin expt.

fDs
(A4) 0.2506(49) 0.2496(48) 0.2291(22) 0.2304(24) 0.282(16)(7)

fDs
(Ak) 0.2373(47) 0.2369(46) 0.2305(31) 0.2304(30) 0.282(16)(7)

Table 12: Ds meson decay constants in unit of GeV determined from Ak and A4 using Mpole as

well as Mkin. The lattice spacing is determined by the Sommer scale r0 = 0.5fm. The experimental

value for fDs
is take from ref. [18].

Iwasaki plaquette expt.

∆M(J/Ψ − ηc) 0.0728(8)(+119
−0 ) 0.0788(6)(+89

−0 ) 0.1173(12)

∆M(D∗

s − Ds) 0.1243(28)(+105
−0 ) 0.1261(16)(+97

−0 ) 0.1438(4)

fDs
(A4) 0.2506(49)(+10

−0 )(+133
−0 ) 0.2291(22)(+13

−0 )(+14
−0 ) 0.267(33)

Table 13: The final results of the charmonium hyperfine mass splitting, the charmed-strange meson

hyperfine splitting and the Ds meson decay constant in unit of GeV. The first error is statistical

and the second and the third ones are the cutoff errors explained in the text. The lattice spacing

is determined by the Sommer scale r0 = 0.5fm.

and fPS(Ak) from

a3/2Φk
P ≡

√

aEpole
PS afPS = Z

Aimpr
k

√

aEpole
PS /(iapk), (4.11)

where Z
Aimpr

4

and Z
Aimpr

k

are the decay matrix elements defined in eq. (3.11). Note that only

the improved axial vector current with cPT+NP
Aµ

is considered for the plaquette gauge action.

In figure 11 we plot a3/2Φ4
P and a3/2Φk

P as a function of 1/(aMpole,kin
PS ). The interpolation

lines are obtained by fitting the results with the following ansatz:

a3/2Φ4
PS = A + B/(aMpole,kin

PS ) + C/(aMpole,kin
PS )2 + Damlight

q , (4.12)

a3/2Φk
PS = A + B/(aEpole,kin

PS ) + C/(aEpole,kin
PS )2 + Damlight

q . (4.13)

Using the fitted values of the parameters in table 10), (11, we obtain fDs in physical unit.

Table 12 lists the results of fPS at κc(Ds,M
pole) and κs and fPS at κc(Ds,M

kin) and κs

for each gauge action together with the experimental value.

4.3 Cutoff effects

We now consider the cutoff effects in our results. Leading cutoff effects for the gauge part

are O(a2Λ2
QCD). The light quark action also has O(a2Λ2

QCD) errors, since the nonpertur-

bative value of cSW is employed for each gauge action.

For the RHQ action, on the other hand, the leading cutoff effects are

O(αs(µ)2f
(2)
0 (amQ)) with αs(µ) = g2(µ)/(4π), which comes from the fact that the pa-

rameter ν associated with the O(1) kinetic term is only adjusted up to one-loop level.

Since this error is responsible for the deviation of ceff from unity, the mass dependence of

ceff shown in figures 4 and 5 tells us that f
(2)
0 (mQa) is a smooth function of amQ in the

range of the heavy quark mass employed in our simulation. In addition, there exists the

O(αs(µ)2g
(2)
0 (amQ)) errors originating from the heavy quark axial vector currents whose
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Figure 11: Charmed-strange pseudoscalar meson decay constants obtained from the temporal(top)

and spatial(bottom) components of the axial vector current as a function of aMPS in case of κlight =

κ3.

renormalization factors are determined up to one-loop level. These are the leading cutoff

effects in the deviation of R from unity shown in figure 6, where we find fairly smooth amQ

dependence.

Let us take into account these O(αs(µ)2f
(2)
0 (amQ), αs(µ)2g

(2)
0 (amQ)) effects in our

error estimate using a difference of the charmed meson hyperfine splittings obtained with

Mpole and Mkin and also a difference of the charmed meson decay constants extracted from

Ak and A4. For the hyperfine splittings we take the pole mass result as the central value

and a difference between two results as a systematic error. In table 13 our final result for

the charmonium hyperfine splitting in physical unit is also presented, where the central

value is ∆Mpole(J/ψ − ηc), the first error is statistical and the second is a systematic error

explained above. The second error, much larger than the first, is about 16% for the Iwasaki

action and about 12% for the plaquette action. Similarly, our final result for the charmed-

strange meson hyperfine splitting in physical unit is given in table 13, where the central

value is ∆Mpole(D
∗
s −Ds), the first error is statistical and the second is a systematic error.

It is interesting that the second errors for the charmed-strange meson hyperfine splitting

, which are about 8% for the Iwasaki action and about 7% for the plaquette action, are

half of those for the charmonium hyperfine splitting. This suggests that the dominant
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Figure 12: Comparison of charmonium S-state hyperfine splitting in physical unit.

systematic errors come from the heavy quarks, so that they are proportional to a number

of heavy quarks in the mesons. In table 13 our final result for the Ds meson decay constant

in physical unit is also presented, where we take fDs(A4) with Mpole as the central value.

The first error is statistical and the second and the third are systematic errors estimated

from a difference of fDs(A4) between Mpole and Mkin and a difference between fDs(A4)

and fDs(Ak) with Mpole, respectively. Both the second and third errors are less than 1%

for the plaquette gauge action. For the Iwasaki gauge action, on the other hand, the third

error is about 5% though less than 1% for the second. Smallness of the third error for the

plaquette action may be partly due to the use of cPT+NP
A . Note that the systematic errors

associated with the heavy quark action are estimated at one lattice spacing in this paper.

Therefore, in future works, it is desirable to study these systematic errors by changing the

lattice spacing.

Once the systematic errors are taken into account, our results of the hyperfine splitting

for two gauge actions agree with each other. For fDs, on the other hand, an agreement

is not so excellent: the difference is still 1.5σ even if we take the systematic error for the

Iwasaki action. It could be interesting to see whether the difference diminishes if we employ

cPT+NP
A for the Iwasaki gauge action.

4.4 Comparison with the previous results

In figure 12 our results of the S-state charmonium hyperfine splitting are compared with

a previous result obtained by the CP-PACS collaboration using the anisotropic lattice

QCD [19], where the effective speed of light is nonperturbatively adjusted to unity such

that Mpole = Mkin. Both results are plotted as a function of the lattice spacing determined
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Figure 13: Comparison of Ds meson hyperfine splitting in physical unit. The results of ref. [20]

are slightly shifted in a coordinate for visibility.

by the Sommer scale r0 = 0.5fm. Our result with the pole mass for the Iwasaki gauge

action is consistent with the continuum limit of the anisotropic lattice result within the

small statistical error, though the kinetic mass result is rather large. For the plaquette

gauge action, on the other hand, both the pole and kinetic mass results are larger than

the anisotropic lattice results. The large systematic error due to the pole to kinetic mass

difference should be eliminated with the use of nonperturbative ν in future calculations. It

should be noted that all the results are smaller than the experimental value by about 40%.

figure 13 shows the comparison of our results of the S-state charmed-strange meson

hyperfine splitting with a previous result obtained by the UKQCD collaboration using the

heavy clover quark action [20]. We observe that all the results agree within large statistical

errors, though they are smaller than the experimental value by about 10%.

In figure 14 we compare our results of fDs with a previous result obtained by the

ALPHA collaboration using the heavy clover quark and the plaquette gauge actions [21].

Our results at finite lattice spacing are closer to the ALPHA result at the continuum limit

than at a similar lattice spacing. This could indicate that fDs from the RHQ action has

a good scaling behavior, which should be checked in future scaling studies. We also point

out that cPT+NP
A for the Iwasaki gauge action may reduce the difference between fDs(A4)

and fDs(Ak). We also leave it to future work.
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Figure 14: Comparison of Ds meson decay constant in physical unit.

5. Conclusion

We have carried out a first nonperturbative test of the RHQ action focusing on the magni-

tude of the cutoff errors. We investigate the dispersion relation of the pseudo-scalar meson

and the space-time symmetry for the pseudo-scalar meson decay matrix element. Our re-

sults show that the RHQ action has much smaller cutoff errors than the heavy clover quark

action around the charm quark mass.

We also investigate the systematic errors due to the cutoff effects for the physical

observables. In case of the charmonium (charmed-strange) hyperfine splitting, a difference

between the results with Mpole and Mkin is used to estimate the systematic error, which

is as large as 16% (8%) for the Iwasaki gauge action and 12% (7%) for the plaquette

gauge action. For the Ds meson decay constant fDs , we estimate the systematic error by

a difference between fDs(A4) and fDs(Ak) as well as a difference between Mpole and Mkin.

The latter is negligible for both gauge actions, while the former is about 5% for the Iwasaki

gauge action and 0.5% for the plaquette gauge action.

There are two important subjects for future studies. One is a further improvement of

the RHQ action to reduce the cutoff effects. In particular, it is rather easy to tune the

improvement coefficient ν nonperturbatively, which is supposed to eliminate the leading

O(α2
s) errors. This study is under way [22]. The other is the inclusion of light dynamical

quark effects. It is interesting to investigate whether the deficit in the quenched value for

the S-state charmonium hyperfine splitting is fully accounted by the sea quark effects.
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A. Renormalization factors and improvement coefficients for massive

quarks

In this appendix we explain how to determine the input parameters for the RHQ action and

the axial vector currents in our numerical simulation, such as κ, the improvement coeffi-

cients and the renormalization factors together with the mean field improvement discussed

in refs. [8, 9].

The mean field improvement is introduced as the redefinition of link variable Uµ(x) →

u0(Uµ(x)/u0) ≡ u0Ũµ(x), where u0 = P 1/4 with the averaged plaquette value P in our

simulation. The one-loop expression for u0 is given by

u0 = 1 − g2 CF

2
TMF, (A.1)

where TMF = 1/8 for the plaquette gauge action and 0.0525664 for the Iwasaki gauge

action [23].

With the replacement Uµ(x) → u0Ũµ(x) it is natural to introduce the boosted gauge

coupling g2
0/u

4
0, which is related to the MS coupling constant g2

MS
(µ) with the scale µ = 1/a

as
1

g2
MS

(µ)
=

c0P + 8c1R

g2
0

− 0.1006 + 0.03149Nf +
11 − 2

3Nf

8π2
log(aµ) (A.2)

for the Iwasaki gauge action and the O(a) improved Wilson quark action [24], and

1

g2
MS

(µ)
=

P

g2
0

− 0.1349 + 0.03149Nf +
11 − 2

3Nf

8π2
log(aµ) (A.3)

for the plaquette gauge action and the O(a) improved Wilson quark action [17]. In the

following we simply use g2 to express g2
MS

(µ = 1/a).

The inverse quark propagator at the leading order without the mean-field improvement

is given by

aS−1
q = am0 + g2am(1)

c + iγ4 sin(p4a) + iν
∑

k

γk sin(pka)

+rt(1 − cos(p4a)) + rs

∑

k

(1 − cos(pka)) (A.4)

where am0 is the bare quark mass appeared in the action. Note that we include the one-

loop contribution to the critical quark mass, g2m
(1)
c , in the leading order. A reason for

this will become clear later. The pole mass am
(0)
p , determined from the zero of the inverse

propagator by setting p4 = im
(0)
p and pk = 0, satisfies

sinh(am(0)
p ) + rt cosh(am(0)

p ) = am + rt, (A.5)
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where am is a shifted quark mass defined by am = am0 + ag2m
(1)
c . If we perform the

replacement Uµ(x) → u0Ũµ(x) in the RHQ action given in eq. (1.1) or eq. (2.2), the inverse

quark propagator at the leading order with the mean-field improvement becomes

aS̃−1
q = am0 + g2a∆m(1)

c + iγ4u0 sin(p4a) + iν
∑

k

γku0 sin(pka)

+rt(1 − u0 cos(p4a)) + rs

∑

k

(1 − u0 cos(pka)) (A.6)

where g2a∆m
(1)
c = g2am

(1)
c − (rt +3rs)(1−u0). Then the pole mass am̃

(0)
p at the tree-level

with the mean-field improvement satisfies

u0 sinh(am̃(0)
p ) = am0 + ag2∆m(1)

c + rt(1 − u0 cosh(am̃(0)
p )) + 3rs(am̃(0)

p )(1 − u0)

= am + rtu0(1 − cosh(am̃(0)
p )) + (1 − u0)3(rs(am̃(0)

p ) − 1). (A.7)

Note that the shifted quark mass am is kept equal with and without the mean field im-

provement. Therefore both m
(0)
p and m̃

(0)
p vanish at am = 0. Since the remaining one-loop

correction to the quark mass is multiplicative to m, the pole masses in both definitions

vanish at am = 0 also at one-loop level. The inclusion of g2am
(1)
c or g2a∆m

(1)
c at leading

order is necessary to satisfy this property. Although in this work we follow the mean-field

improvement procedure given in section 6 of ref. [8] which does not include the ∆mc cor-

rection, the effects on the improvement parameters are less than 1%. eqs. (A.5) and (A.7)

lead to the following relation that

am(0)
p = am̃(0)

p + (u0 − 1)
sinh(am̃

(0)
p ) + rt(cosh(am̃

(0)
p ) − 1) + 3(rs(am̃

(0)
p ) − 1)

cosh(am̃
(0)
p ) + rt sinh(am̃

(0)
p )

≡ am̃(0)
p + g2a∆mp, (A.8)

where

a∆mp = −
CF

2
TMF

sinh(am̃
(0)
p ) + rt(cosh(am̃

(0)
p ) − 1) + 3(rs(am̃

(0)
p ) − 1)

cosh(am̃
(0)
p ) + rt sinh(am̃

(0)
p )

. (A.9)

As a consequence, the quark pole mass is written at the one-loop level as

amp = am(0)
p + g2am(1)

p = am̃(0)
p + g2am̃(1)

p , (A.10)

where am̃
(1)
p = am

(1)
p +a∆mp, and am

(1)
p is the one-loop correction to the pole mass without

the mean field improvement [8].

The mean-field improved parameters Zq, ν, rs, cE and cB are given below with the use

of am̃
(0)
p and am̃

(1)
p :

Zq,latt(am̃(0)
p ) = Z

(0)
q,lattu0



1 + g2
Z

(1)
q,latt

Z
(0)
q,latt

+ g2 CF

2
TMF +

g2

Z
(0)
q,latt

∂Z
(0)
q,latt

∂m
(0)
p

a∆mp



(A.11)

ν(am̃(0)
p ) = ν(0) + g2ν(1) + g2 ∂ν(0)

∂am
(0)
p

a∆mp, (A.12)
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rs(am̃(0)
p ) = r(0)

s + g2r(1)
s + g2 ∂r

(0)
s

∂am
(0)
p

a∆mp, (A.13)

cE (am̃(0)
p ) = c

(0)
E

1

u3
0

(

1 + g2 c
(1)
E

c
(0)
E

− g2 3

2
CF TMF +

g2

c
(0)
E

∂c
(0)
E

∂m
(0)
p

a∆mp

)

, (A.14)

cB (am̃(0)
p ) = c

(0)
B

1

u3
0

(

1 + g2 c
(1)
B

c
(0)
B

− g2 3

2
CF TMF +

g2

c
(0)
B

∂c
(0)
B

∂m
(0)
p

a∆mp

)

, (A.15)

where one-loop corrections, Z
(1)
q,latt, ν(1), r

(1)
s , c

(1)
E

and c
(1)
B

, have already been calculated in

ref. [8]. We replace a perturbative value of u0 in the above expressions by u0 = P 1/4 with

P taken from our simulation. We finally determine κ in terms of m̃
(0)
p as follows. Using

the relation of eq. (A.7) with rt = 1

am0 + a∆mc = u0e
am̃

(0)
p − 1 − 3rs(1 − u0), (A.16)

the hopping parameter κ is given in terms of m̃
(0)
p :

κ ≡
1

2

1

1 + 3rs + am0
=

1

2

1

u0(eam̃
(0)
p + 3rs) − a∆mc

. (A.17)

With this definition, κ becomes κcrit at the one-loop level for am̃
(0)
p = 0.

In a similar manner we can derive the renormalization factor and the O(a) improvement

coefficients for the axial-vector currents in eq. (2.8). The matching factor ZAµ from the

lattice to the continuum MS scheme is given in ref. [9]:

ZAµ =
Z latt

Aµ

ZMS
Aµ

=

√

Z
(0)
Q,latt(am̃

(0)
p1 )

√

Z
(0)
q,latt(am̃

(0)
p2 )u0

(

1 − g2∆Aµ + g2 CF

2
TMF

+
1

2

g2

Z
(0)
Q,latt

∂Z
(0)
Q,latt

∂m
(0)
p1

a∆mp1 +
1

2

g2

Z
(0)
q,latt

∂Z
(0)
q,latt

∂m
(0)
p2

a∆mp2

)

, (A.18)

where ∆Aµ is the one-loop correction to the renormalization factor of Aµ [9]. For the O(a)

improvement coefficients, on the other hand, we use the expressions of eq. (2.8) suitable

for our numerical simulations, which are related to those in ref. [9] as

c+
Ak

= g2c+,PT
Ak

, (A.19)

c+
A4

= g2c+,PT
A4

(am̃(0)
q + am̃

(0)
Q )/sinh(am̃(0)

q + am̃
(0)
Q ), (A.20)

c−Aµ
= g2c−,PT

Aµ
/u0, (A.21)

cL
Aµ

= −g2cL,PT
Aµ

/u0, (A.22)

cR
Aµ

= g2cR,PT
Aµ

/u0, (A.23)

where c
{±,L,R},PT
Aµ

are calculated as a function of m̃
(0)
Q and the superscript PT represents

that these parameters are defined in ref. [9]. Note in particular that a minus sign in
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the relation (A.22). A factor 1/u0 in eqs. (A.21)−(A.23) is due to link variables in the

point splitting operators of eqs. (2.9) and (2.10). In eq. (A.20) we multiply an extra factor

(m̃
(0)
q +m̃

(0)
Q )/sinh(m̃

(0)
q +m̃

(0)
Q ) since c+,PT

A4
in ref. [9] is a coefficient of (m̃

(0)
q +m̃

(0)
Q )q̄(q)Q(p)

while c+
A4

in eq. (2.8) is a coefficient sinh(m̃
(0)
q + m̃

(0)
Q )q̄(q)Q(p).
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